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23.02.10 – 1שיעור 

עקרון האינדוקציה

,Nℕ={1,2אקסיומה הסדר הטוב ב- 3. ..}

לכל קבוצה לא ריקה של מספרים טבעים יש איבר קטן יותר.:הגדרה

...,2}לקבוצה של מספרים טבעיים מהצורה: דוגמה יש איבר קטן ביותר,{

.2 או ל-1, אבל לא ידוע אם הוא שווה ל-2 או 1והוא 

עקרון האינדוקציה:משפט

 קבוצה של מספרים טבעיים המקיימת את שני התנאים הבאים:Aנניח ש-

1.1∈A

n1∈Aאז גםn∈Aאם טבעי, nלכל .2

A=ℕאז 

A⊆ℕ.  נתון ש-A=ℕצ"ל ש-:הוכחה

∖n∈ℕ(כי ∅≠ℕ∖A.  אז n∉Aכך ש-n∈ℕנניח שקיים  A(

∖n0∈ℕלפי אקסיומת הסדר הטוב קיים מספר  A-שהוא קטן ביותר בℕ∖A.

1n0ולכן ℕ∖A∌1, הרי ש-A∋1מאחר ש-

ℕ∖A(המספר הקטן ביותר ב-

)A∋1 כי 1הוא גדול מ-

שלם)n0≥2(כי n0−1∈ℕאז 

, ℕ∖Aקטן ביותר ב-n0מאחר ש-

.n0−1∈Aולכן ℕ∖Aלא שייך ל-n0−1נובע ש- 

) ← סתירה.n0∈A(כלומרn0−11∈Aאבל לפי התנאי (ב) נקבל ש-

.A=ℕשגויה ולכןn∉Aכך ש-n∈ℕלכן ההנחה על קיום 
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עקרון האינדוקציה – ניסוח אחר:משפט

 טבעי מקיימת את התנאים הבאים:nנניח שתכונה מסוימת שמנוסחת לכל 

n=1התכונה נכונה עבור .1

n1 טבעי כלשהו אז היא נכונה גם ל-nאם התכונה נכונה ל-.2

  טבעי.nאז התכונה נכונה לכל 

∣A={n∈ℕנסמן ב-:הסבר n-התכונה נכונה ל }

A=ℕ מקיימת את התנאים (א) ו-(ב) ממשפט הקודם ולכן Aאז 

 טבעי).n(כלומר התכונה נכונה לכל 

)Arithmetic progression (סדרה חשבונית:בכללי

12...n−1=
n n−1

2

a , ad ,a2d , .... , an−1d

S=n⋅ad 12...n−1=nad n
n−1

2

)Geometric progression (סדרה הנדסית

x≠1 1 xx2
 ...xn−1

=
1− xn

1−x

n ,lnלהוכיח שלכל :תרגיל n11
1
2


1
3
...

1
n

 

1
1
2


1
22...2n−1

=

1−
1

2n

1−
1
2

= 2 1−
1
2n
0



2

n2−n
2

=
n n−1

2

http://en.wikipedia.org/wiki/Arithmetic_progression

http://he.wikipedia.org/wiki/  סדרה חשבונית  

http://en.wikipedia.org/wiki/Geometric_progression

http://he.wikipedia.org/wiki/סדרה הנדסית

http://he.wikipedia.org/wiki/%D7%A1%D7%93%D7%A8%D7%94%20%D7%94%D7%A0%D7%93%D7%A1%D7%99%D7%AA
http://en.wikipedia.org/wiki/Geometric_progression
http://he.wikipedia.org/wiki/%D7%A1%D7%93%D7%A8%D7%94%20%D7%97%D7%A9%D7%91%D7%95%D7%A0%D7%99%D7%AA
http://en.wikipedia.org/wiki/Arithmetic_progression


באינדוקציה.:הוכחה

).2e)lne=1כי ln21 הטענה היא n=1עבור .1

.n+1 כלשהו ונוכיח שהיא נכונה ל-nנניח שהטענה נכונה ל-.2

lnכלומר להניח ש- n1  1
1
2
...

1
n

 

lnצ"ל ש- n2  1
1
2
...

1
n1

 

אכן 
1

1
2
...

1
n

לפי ההנחה ln n1


1
n1

 ln n1
1
n1

ln  לכן מספיק להוכיח ש- n1
1
n1

 ln n2 

  וזה שקול ל-
1
n1

 ln n2−ln n1

כלומר ל-
1
n1

 ln n2
n1 =ln 1 1

n1  

lnידוע ש- 1x x לכלx0.('תוצאה של משפט לגרנז)

=xבפרט, עבור 
1
n1

lnנקבל ש- 1 1
n1  1

n1
מ.ש.ל.

 n+1 נובעת הנכונות ל-nהוכחנו שמתוך נכונות הטענה ל-

 טבעי.nולכן הטענה נכונה לכל 

אי שוויון ברנולי:תרגיל

1a  טבעי מתקייםnולכל a−1להוכיח שלכל  n ≥ 1na

בינום ניוטןלפי :הערה

 1a n = 1n1an2a
2
... = 1na

n n−1
2

a2
...  1na

a0 אם

1a0שיקול זה לא תקף כאשר

מספר קבוע.a−1נבחר :הוכחה

  טבעי.n  זה, האי שוויון הנתון נכון לכל aנוכיח עבור 

נעשה זאת בשיטת האינדוקציה.

1aהאי שוויון הוא n=1עבור .1 1≥11⋅a.וזה נכון

1a כלשהו, כלומר nנניח שהטענה נכונה עבור .2 n≥1na

1a כלומר n+1ונוכיח שהטענה נכונה ל- n1
≥1n1a

3



1aאכן  n1
= 1an1a ≥ 1na1a

)a−1(כי 1a0     הנחה האינדוקציה ושימוש בעובדה ש- 

=1naana2
=1n1ana2

0

≥1n1a

.n ושכן הטענה נכונה לכל n+1  נובעת נכונות ל-nלכן מתוך נכונות הטענה ל-

n0אם טענה מסוימת נכונה למספר טבעי:הערה

n+1  נובעת ל-nואם נכונות הטענה ל-

.n≥n0אז הטענה נכונה לכל

והוכחה דומה לזו של עקרון האינדוקציה

.n0 מסעיף (א) עובר ל-1רק שהתפקיד של 

בדרך זו אפשר להוכיח למשל ש-:

1a n1na לכלn≥2-1−וa≠0.

1  טבעי, nלהוכיח שלכל :תרגיל
1
n

n

 1 1
n1 

n1

.

אינדוקציה.: הוכחה

1 האי שוויון הוא n=1עבור .1
1
1


1

1
1
2


2

2 .  כלומר 
9
4

.

7∣52
=56∣25 952

=9025 1252
הריבוע של מספרים15625=

10x52=100x2כי
100x25=100x x125-5    המסיימים ב.

                                     :הערה
1 1

n1 
n1

11
n 

n =
 n2
n1 

n1

 n1
n 

n =
nn⋅n2n1

n1n⋅n1n1

=
[ nn2 ]

n
n2

[n1n1 ]
n
n1

=  n2
2n

n2
2n1 

n

⋅
n2
n1

= 1 −
1

n2
2n1

1an a=
−1

n12
−1

n

⋅
n2
n1 

     


לפי ברנולי 1−
n

n2
2n1

1na

n2
n1  = n2

n1
n2
2n1
n13

⋅
n2
n1

=
n3
3n2

3n2
n3
3n2

3n1
 1
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bn=11:תרגיל
n 

n−1

סדרה יורדת.

( כמו בתרגיל הקודם, מוכיחים ש-
bn
bn1

 1(

an=1   :מסקנה
1
n

n

עולה

bn=1
1
n

n1

יורדת.

bn=11  כי nלכל anbnבנוסף, 
n 

n


an

⋅11
n   an

a1anbnb1

      
2 an

e

4

 ישרים עוברים דרך שטחו של מלבן.n:תרגיל

הוכח שניתן לצבוע את השטחים הנוצרים בתוך

המלבן בשני צבעים בלבד, כך שחלקים בעלי

צלע משותפת ייצבעו בצבעים שונים.

  את מספר הישרים העוברים דרך המלבן.nנסמן ב-:הוכחה

 יש צביעה מתאימה.n=1אם 

 ישרים.n+1 ישרים קיימת צביעה טובה ונוכיח שיש כזו גם ל-nנניח שלכל 

 ונבחר צביעה נכונה.n+1 ישרים מתוך ה-nנעבור תחילה 

.n+1כעת נעבור את הישר ה-

 נחליף את הצבעים, n+1בצידו האחד של הישר ה-

ובצידו אחר נשמור על הצביע הקודמת.

.  מ.ש.ל.n+1כך מקבלים צביעה נכונה ל-
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נושאים בתורת הקבוצות

מושג השקילות ומושג העוצמה.: השוואת קבוצות

 בן שקולות (או שוות עוצמה)A,Bנאמר ששתי קבוצות :הגדרה

fאם קיימת פונקציה הפיכה : AB.

(כלומר קיימת מתאמה חח"ע ועל בין שתי הפונקציות).

בקורס הזה כל הפונקציות הן פונקציות מלאות.:הערה

A=ℕ ,B={2n:דוגמה ∣ n∈ℕ}

fהפונקציה  : AB מוגדרת ע"יf n=2n.היא חח"ע ועל

לכן הקבוצות שקולות.
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Quick Reference
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