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25.02.10 – 1שיעור 
amenny@idc.ac.ilמני אקא, 

 מהציון.10% מרתגילים הטובים – 70%

.10%מבחן אמצע מגן – 

תרגיל מפורסם ברביעי-חמישי ומגישים ביום א' שבוע וחצי אחרי.

ספרות

 – בפקרים האחרונים.Iאוניברסיטה פתוחה – אלגברה לינארית 

אוניברסיטה הפתוחה – אלגברה לינארית למדעי הטבע.

Google: Linear Algebra MIT course

 – בתיאום מראששעות קבלה

8:00-10:00רביעי – 

8:30-10:00שישי – 

לשלוח מייל.

מרחבים וקטורים

•ℝ
n
={a1 ,... , an ∣a i∈ℝ}={

a1

⋮
an
∣a i∈ℝ}

מרחבים וקטורים כלליים יותר:•

מרחבי פונקציות•

פולינומים•

מרחב המטריצה•

(תזכורת בהמשך)

)Linear maps (העתקות לינארית

)Linear transformation – טרנספורמציות לינארית(שם אחר: 

פונקציות וקטוריות.1

fזוהי קבוצה .  ניתן להגדיר פונקציות בין ℝnכמאור,  :ℝn
תחום

ℝn
טווח

.

ℝnלוקטור ב-ℝn  לוקחת וקטור ב-fכלומר 
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דוגמאות:.2

F)א :ℝ2ℝ3x , y ↦ x y ,3x5y ,2y 

G)ב :ℝ3
R2x , y , z ↦ x y , x−z 

B מ"ו, V)ג :V V-2היא העתקת הניסוח ב.

.  V 2w∈V לוקטור Bעובר ע"י w∈V כלומר, וקטור )ד

Bאז V=ℝ2למשל, )ה :ℝ2
ℝ

2x , y ↦2x ,2y

H)ו :ℝ2
ℝ

2a ,b↦ 4a7b , a−b 

f)ז :ℝ2
ℝ

2x , y ↦ x sin y  , x2 y

g)ח :ℝM 2ℝa ,b↦  a b
ab b2

h)ט :ℝ2
M 2ℝa ,b↦  a b

ab b 
d)י :ℝn[ x ]ℝn[ x ]p x ↦ p ' x

]Rn)כ x ]={n-ממעלה קטנה שווה לℝ פולינום מעל }

 – בקצרה (נחזור לזה).הרכבת פונקציותנדבר על .3

ℝ
2
FR3

Gℝ2

x , y ↦ F ↦ x y ,3x5y ,2y ↦G↦ 4x6y , x− y

!קבוצה" מקבוצה לקבוצה.  אבל מרחב וקטור זו לא סתם הולכותפונקציות ".4

Gנתבונן ב-(ב):  :ℝ3
ℝ

2

v=3,4,1G v =7,2

w=0,0,1Gw=0,−1

vw=3,4,2
G v

ℝ
2

w =G V 
ℝ

2

G W =7,1

G.מכבדת" את תכונת חיבור הוקטורי" 

7V=21,28,7G 7V=4,9,14

Gקיבלנו ש- 7V =7⋅G V 

G.מכבדת" את הכפל בסקלר" 

F מרחבים וקטורים.  פונקציה V,Wיהיו :הגדרה :V W אם: העתקה לינאריתתקרא

v1,vלכל .1 2∈VמתקייםF v1v2=F v1F v2

Fמתקייםv∈Vולכל ∈ℝלכל סקלר .2  v =F v
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תכונות בסיסיות

Tתהי :טענה :V W:העתקה לינארית אז

1.T  0v= 0w

2.T −v =−T v 

).  זה נובע פשוט מההגדרה:2נתחיל ב-(הוכחה:

T −v =T −1⋅V  =
לינאריות

−1T v =−T v 

עתה נוכיח את:

            T  0v =T  0v0v  =
לינאריות (1(

T  0v T  0v   

Tנעביר עגף ונקבל:     0 = 0w

                0v0v = 0v

תרגיל אופייני הוא לבדוק האם עתקה הוא לינארית.

אם העתקה לא מעבירה את וקטור האפס לוקטור האפס:הערה

אז הוא בוודאי לא לינארית.

העתקה לינארית.5

T vw =T v T w ∀v ,w∈V

T  v =T v ∀∈ℝ ,∀ v∈V

v=2,2f v =2sin 2 ,8

f 32,2=6sin6 ,216

≠

3⋅ f 2,2=6sin2 ,24

xהעתקה לינארית ונקח .א , y  ,x ' , y ' ∈ℝ2

F x , y  x ' , y ' =F x x ' , y y ' 
=xx ' y y ' ,3x3x '5y5y ' ,2y2y ' 

F x , y F x ' , y ' = x y ,3x5y ,2y x ' y ' ,3x '5y ' ,2y ' 
= x x ' y y ' ,3x3x '3y5y ,2y2y ' 
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אקסיומת השנייה:

F x , y =F  x , y = x y ,3 x5 y2 y

 F x , y=x y ,3x5y ,2y

לינארית.ב

לינארית.ג

לינארית.ד

לא..ה

b2לא.  .ו

לינארית..ז

לינארית, כי:.ח

 p x q x  '=p ' xq ' x 

⋅p x  '= p ' x

ℝדוגמה:   .ט
2
ℝ

3x , y ↦ x , y1, x y 

0,↦ 0,1,0≠0.ומהטענה שראינו נובע שזו לא העתקה לינארית

תמונה של צירוף לינארי.5

Tתהי  :V W לכל   .v∈Vהוקטורw=T v  נקרא התמונה שלv.

מה התונה של צ"ל:

v1יהיו ,... , vn∈Vויהיוv=1 v1...n vn.צירוף לינארי

נרצה לדעת מיהו:

T v=T 1 v1...n v n =
באינדוקציה מההגדרה

1T v12 T v 2...nT vn

n=2נסביב במקרה 

T  vv ' =
1

T  v v ' =
2

T v T v ' 

Tתהי :מסקנה :V W.העתקה לינארית

v1אם  ,... , vn∈Vתלויים לינארית

Tאז  v1 , ... , T vn∈W.גם כן תלויים לינארית

בדף הבא.הוכחה:

4



1מהנתון, קיימים :הוכחה , ... ,nכך ש-שלא כולם אפסים 1 v1... n vn=0.

 ונקבל:  Tנפעיל את  1T v1...nT vn=T 1 v1... nv n=T 0=0

T-ות הן אפס, נובע ש-מכיוון שלא כל ה- v1 , ... , T vn.תלויים לינארית

T מרחב וקטורי ונגדיר V,W.  יהיו העתקת האפסדוגמה :VWv ↦ 0w

0=Tזו העתקה לינארית.  :חשובה vw=T vT w=00(תרגול)

Tההפך לא נכון.  כלומר את  :VWהעתקה לינארית

v1ו- ...vn∈V נובע ש-לאו דווקאבת"ל אז T v1 , ... , T vn.בת"ל

ℝ2ℝ2xלמשל, העתקת אפס.   , y 0,0

Tתהי :טענה :V W ויהיv1 ,... , vn-בסיס לV.

Tאם ידוע מיהם v1 , ... , T vnכלומר, (במילים אחרות), אם ידוע ,

 מעבירה כל וקטור.T, אז אני יכול לדעת לאן תמונה של בסיס

 של ציפי.12עמ' :דוגמה

ℝבסיס ל-v1=1,0,0v2=1,1,0v3=1,1,1יהי 
3.

Tנתונה :ℝ3
ℝ

Tוידוע ש-2 v1=−1,1T v2=3,0T v3=0,1

Tצריך למצוא את  8,11,7 לכלa , b , c.

ראשית, נמצא איך נכתב לפי איברי הבסיס.

8,11,7=c11,0,0 c21,1,0c31,1,1=c1c2c3

c3=7c2=4c1=−3

T 8,11,7 = T −3v14v27v3

=
לינאריות

−3T v14T v27T v3

= −3 −1,14 3,07 0,1
= ...

v1 בצ"ל של V.  נכתוב את v∈Vיהי :הוכחה ,... , vn :V=1 v1...n v n

Tנבדוק מהו  V  :T V =T 1 v1...nv n =
לינאריות

1 T v1...nT vn

Tמכיוון ש- v1 , ... , T vn ידוע לי, אני יכול לחשב אתT V .מהביטוי האחרון

מ.ש.ל.
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אז היא מגדירה העתקה לינארית m×n מטריצה Aתהי V=ℝnW=ℝmאם כל

Tשנסמנה ב-:הדוגמאות A  .T A:ℝn
ℝ

m  .v↦ Av

Am×n
⋮
v
⋮n=

⋮
Av
⋮ m
Tצריך לבדוק  Avw=

?

T AvT aw

Avw=מה כתוב כאן?  
?

AvAw .וזה ראינו בסמסטר קודם 

T A v =
?

T A v 
Aוזה שקול למה שאנחנו יודעים v = Av 

“?” כי צריך לבדוק אם זה לינארי.

.12-15דוגמאות מסיכומים של ציפי – :בתרגול

גרעין ותמונה של העתקה לינארית

image, תמונה = kernelגרעין  = 

Tתהי  :V W:העתקה לינארית.  נגדיר

 הואT) של kernel (גרעיןה.1

{v∈V ∣T v =0 Kerוימסומן בתור { T .

 מוגדרת להיותT של תמונהה.2

ImT={w∈W ∣∃ v∈V s.t.Tv=w }={T v ∣ v∈V }.

T:דוגמה :ℝ2
ℝ

2T  x , y=x ,0

.  kerTנבדוק מהו 

kerT={x , y ∣T x , y =0,0}
={x , y ∣ x ,0=0,0 }
={x , y ∣ x=0 }=y-ציר ה

 
ImT={T x , y ∣ x , y ∈ℝ2

}

={x ,0 ∣ x , y ∈ℝ2
}

={x ,0 ∣ x∈ℝ}=x-ציר ה

6



T.  ראינו שהיא מגדירה העתקה mxn מטריצה Aתהי :“דוגמה" A:ℝn
ℝ

mv↦ Av.

ker T A={v∈ℝ
n
∣T Av =0 }={v∈ℝ

n
∣ Av=0 }=null  A={ מרחב האפס

A של מטריצה
}

kerTבשפה של מערכות משוואות Aאלו בדיוק הפתרונות של מערכת

 מגדירה.Aהמשוואות ההומוגנית ש-

Im T A={Av ∣ v∈ℝn
}


⋮
v1

⋮

⋯
⋮
vn

⋮ 
1

n

⋮
1
= ⋮Av

⋮  = 
⋮
1 v1

⋮

⋯
⋮
n vn

⋮ 
משפטים

1.kerT תת מרחב של V-ו ImT תת מרחק של W.

משפט "שימור האנרגייה" משפט הדרגה והאפסות.2

3.dim KerT dim  ImT =dimV

תת מרחב.kerT⊆Vא):  1  הוכחת 

נשתמש הבוחן לתת מרחב.

.0∈kerTצ"ל ש-.1

Tכלומר יש להראות ש- 0=0.(לכל העתקת הלינארית)

כבר ראינו.

vר:  אם סגירות לחיבו.2 ,w∈kerTאז צ"לvw∈kerT

T vw  =
לינאריות

T v T w=00=0

Tסגירות לכפל בסקלר: .3  v  =
לינאריות

T v =0=0

ImT={wתת מרחב: ImT⊆Wב)  ∣∃v∈, T v=w }

1.0w∈Im כיT 0v=0w.(תמיד)

2.w1,w2∈ ImT צ"לw1w2∈ ImT

∃v2 , T v2=w 2 ∃ v1 ,T v1=w1

T v1v2 =
לינאריות

T v1T v2=w1w2

v1,v (הוקטור Vכלומר, מצאנו וקטור ב-  ולכןw1w2) שתמונתו 2
w1w2-נמצא בImT.
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∋wג) צ"ל ImT אזw∈ ImT לכל∈ℝ

Tכך ש-v∈V:  מהנתון, קיים הוכחה v=w

, תמונה היא:Vנתבונן ב-

T V  =
לינאריות

T V =w

אכן נמצא בתמונה.wכלומר 

מ.ש.ל.

8



11.03.10 – 3שיעור 
(באדיבות ז'רמי אבוהי)

מציאת מטריצה המייצגת העתקה לינארית

T:דוגמה  x , y , z = x y , x− z 

A∈Mהמטרה למצוא  2×3ℝכך שלכלx∈ℝ3מקייםT x=Ax.

A∈Mכלומר למצוא  2×3ℝ-כך שT=T A.

1נמצא אותה ע"י ניחוש:   1 0
1 0 −1

x
y
z  = 

x y
x−z 

ננסה למצוא דרך כללית יותר ושנוכל להכליל אותה למציאת מטריצה ביחס

לבסיסים כלליים.  נשים לב שעמודות:

העמודה הראשונה

T 
1
0
0=11

העמודה השנייה

T 
0
1
0=10

העמודה השלישית

T 
0
0
1= 0

−1

Tתהי:משפט :ℝnℝmהעתקה לינארית.  אז קיימת מטריצהA∈M m×nℝכך

x∈ℝn,Tשלכל  x=Ax ,יתר על כן  .Aהיא מטריצה שעמודיה הן 


⋮
Te1

⋮

⋮
Te2

⋮

⋯
⋮

Ten

⋮ 
שימו לב שיש פה שימוש בבסיס הסטנדרטי.  זה אמור להעלות תהיות:הערה

למה היה קורה אם היינו משתמשים בבסיס אחר.

e1כלומר  , ... , enזהו הבסיס הסטנדרטי

.ℝn, שהואTשל התחום של 

x=יהי :הוכחה
x1

⋮
xn
∈ℝn

כלשהי.

=xנשים לב לעובדה הבאה:  x1e1 x2e2...xn en

T ונקבל Tנפעיל את  x = T x1e1... xn en = x1 T e1... xnT en = *

T שלה היאi שבעמודה ה-Aנתבונן במטריצה  e i.

1

en=
0
⋮
0
1
 , e1=

1
0
⋮
0




m×nזו אכן מטריצה מסדר

Ax :נבדוק מהו 
⋮
Te1

⋮

⋯
⋮
Ten

⋮


x1

⋮
xn
 = x1⋅T e1...xn⋅T en=*

 = Tx

Tסה"כ קיבלנו  x=Ax לכלx∈ℝ.מ.ש.ל  

כיצד נקבעת העתקה לינארית

Tתהי :V W והיB={v1 ,... , vn .Vבסיס ל-{

 אז ניתן לדעת תמונה של כל צ"ל שלהם.Bאם ידועות לנו תמונות איברי 

.V לכל וקטור ב-Tכלומר, תמונת 

Tיהיו :מסקנה :V W-וS :V W העתקות לינאריות, והיv1 ,... , vn-בסיס לV.

Sאז  V i=T V i
כלומר הן מסכימות
על איברי הבסיס

⇔ S=T
כלומר, זו אותה

העתקה

,i=1לכל  2,... , n

v∈V ,S אומר שלכל S=Tטריביאלי.  ⇐:הוכחה v=T v 

Sובפרט  v i=T v iלכלi=1,2,...n

a1כלשהו.  אז קיימים v∈Vיהי ⇒ , ... , an∈ℝ-כך שv=a1 v1...an vn

T v  = T a1 v1...anvn = a1T v1...anT vn

=
לינאריות

a1 S v1...anS vn = S a1v1...anvn = S v 

Tמצאו העתקה לינארית :דוגמה :ℝ2
ℝ

Tכך ש-2 e1=24

2 −1
4 1 =

⋮
Te1

⋮

⋮
Te2

⋮ T  x , y=2x− y ,4x y 

2תשובה:  כל העתקה מהצורה *
4 * xy.

אני יכול לשלוח לאיפה שבא לי, באופן מתמטי -e2שימו לב שמצאנו שאת

בחופשיות.e2אני יכול לבחור את תמונת

T :ℝ2ℝ2T e1=24T e2=302 3
4 5 

2



T :ℝ2ℝ2T e1=24 6
12=324=3T e1=T 30 =

אין מצב
66

v1 מ"ו ו-V:משפט ,... , vn-בסיס לV יהי  .v∈V.וקטור כלשהי

v1 בצירוף לינארי של יחידה כתיבה Vל-יש  ,... , vn.

v=a1כלומר אם v1...anvn-אז הa i-ים יחידים תלויים רק ב-v.

:יחידותנתחיל ב:הוכחה

Sנניח שקיימת שתי העתקות  :TW ,T :V W

i≤n≥1ששתיהן מקיימות  T v i=wi ,1≤i≤n S v i=wi

v1 מסכמות על איברי הבסיסT ו-Sנשים לב שבפרט זה אומר ש- ,... , vn.

.  כלומר הוכחנו יחידות.S=Tמהמשפט האחרון נובע ש-

:קיוםהוכחת ה

T כזו.  ראשית נגדירTנגדיר  vi=wi1לכל≤i≤n.

Tעתה נרצה להגדיר את  v לוקטור כלליv∈V.

v=a1 וקטור כלשהוVיהי  v1...anvn

a1כאשר  , ... , an נקבעו ביחידות לפי הוקטורv.

a1היחידות של , ... , an.את האפשרות לתגור

T v ≝ {
a1T v1  ⋯  anT v n

║ ║
a1 w1  ⋯  anw n

T מוגדר היטב מכווין שהמקדמים a1 , ... , an תלויים רק בוקטורv.

 לינארית.  נתחיל בלהראות שהיא מכבדת חיבור:Tנותר לנו להוכיח ש-

vיהי  ,u∈V-וקטורים כלשהם בV צ"ל  .T vT w=T vw.

vuנכתוב את  ,u , vכצירופים לינאריים שלv1 ,... , vn.

v=a1 v1...an vn ai∈ℝu=b1v1 ...bn vn b i∈ℝ

vu=a1b1v1...anbnvn

Tעתה נבדוק  v T w:=a1w1...anwnb1 w1...vnwn

=a1b1w1...anbnwn

T vu :=a1b1w1...anbnwn

 שומרת על פעולת חיבור.Tכלומר 

3

v
a1

⋮
an




נוסיף עוד פס להוכחה:

T  v j ≝ 0⋅w10⋅w2...1w j0⋅w j...0⋅wn=w j

      v j = 0⋅v10⋅v2...1⋅v j0⋅vv1...0⋅vn

שתי הגדרות מסכימות.

ℝ:דוגמה
3

T

ℝ
31,2,3

Te1

,1,2,3
Te2

,1,2,3
T e3

A
x
y
z 

1
2
3

1
2
3

1
2
3

x
y
z A

1
0
0=

1
2
3A

0
1
0=

1
2
3A

0
0
1=

1
2
3

ImT=S °
1
2
3A

x
y
z  = x 

1
2
3 y 

1
2
3z 

1
2
3 =  x yz 

1
2
3

T:דוגמה v i=0 לכלiכלומר  .w i=0 לכלi?מה נקבל  .

T v = a1 w1...anwn=a1
0...an

0 = 0

v=a1 v1...an vn

כלומר נקבל את העתקת האפס.

w, נוכל לבחור למשל אתw=vבמרחב בו :דוגמה i=v i.

T כך ש-Tכלומר נרצה למצוא  v i=v i.

במרחב הזה נקבל את העתקה הזהות.

מציאת מטריצה המייצגת העתקה כללית

)ℝmל-ℝn( לא דווקא מ-

T מרחבים וקטורים.  מהיV, Wיהי :הסבר :VW  ?T :ℝ4[ x ]
1, x , x2, x3, x4

 M 3×3R
w1 ,w2 ,w3 ,w4 ,w5

A:דוגמה = 
1 2 3
4 5 6
7 8 9 = w1=w2=...=w5 אז נקבלTשמקיימת T  v i=A

T  x3x2 = T x 3Tx2 = A3A = 4A

נבנה משהו טכני שמכליל בנייה שסיימנו:

Tתהי  :VW.העתקה לינארית

B={v1יהי ,... , vn V ,C={w1בסיס סדור ל-{ , ... ,wn}-בסיס סדור לW.
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v] שתקיים Aאני רוצה למצוא מטריצה  ]B
A-כפל ב

        A[v ]B = [Tv ]C לכלv.

[v ]B↦ [Tv ]C למטריצה כזו נקרא המטריצה המייצגת את T לפי הבסיסים B-ו C

T]מטריצה כזו אכן קיימת ונסמן אותה ב- ]C
B

T]בניית ]C
B מבדיקה מהירה נגלה שמטריצה צריכה להיות מבסדר  :m×n.

T].  נגדיר אתm עמודות שכל אחת בגודל nכלומר, יש לה  ]C
Bלהיות המטריצה

Tv] שלה היא iשעמודה ה- i ]C:כלומר ,

.m×nואכן קיבלנו מטריצה 

]ℝ3יהי :תרגיל x ]=V=W.

,B1={1יהי  x , x2, x3
B2={1,1בסיס ו-{ x , xx2, x2x3

בסיס.{

D] העתקה הזהות.  נמצא Dתהי  ]B1

B1-ו[D ]B2

B2.

D:פתרון :ℝ3[ x ]
B1

ℝ3[x ]
B1

[D ]B1

B1= [D1]B1
[Dx ]B1

[D x2
]B1

[D x3
]B1




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


D 1 = 0 = 0⋅10⋅x0⋅x2

0⋅x3

D x  = 1 = 1⋅10⋅x0⋅x2
0⋅x3

D x2
 = 2x = ...

D x3
 = 3x2

= ...

[D ]B2

B2= [D 1]B2
[D1 x ]B2

[D xx 2
]B2

[D  x2
x3

]B 2


D 1 = 0 = ...
D1 x = 1 = 1⋅10⋅1 x 0⋅x x2

0⋅x2
 x3



D x x2
 = 12x = ...

D x2
x3

 = 2x3x2
= ...


0 1 −1 1
0 0 2 −1
0 0 0 3
0 0 0 0



5

[T ]C
B
=  [Tv1]

C
[Tv2]

C

⋯ [Tvn]
C




18.03.10 – 4שיעור 

תזכורת שוב על וקטור הקואורדינטות.

V מ"ו B={v1 ,...v n}-בסיס לV.

אפשר לחשוב על וקטור הקואורדינטות כהעתקה

V ℝn ,V ⟼[V ]B.וזו העתקה לינארית ,

v  לכל מה זה אומר? ,w∈V:[v ]B[w]B=[vw ]B

∈ℝ ,v∈V :[v  לכל  ]B=[ v ]B

i∈ℝ ,v:  לכל כדאי לזכור i∈V :1[v1]B...n[vn]B=[1 v1...1 v1]B

על ייצוג העתקה (כללית) העזרת מטריצות

Tתהי :משפט :V Wהעתקה לינארית

B={v1 ,... , vn V ,C={w1בסיס ל-{ , ... ,wn}-בסיס לW

T]אז קיימת מטריצה שמסומנת ב- ]C
Bהמקיימת[Tv ]C=[T ]C

B
[V ]B

T]יתר על כן,  ]C
B
=[ [Tv1]C [Tv2]C⋯[Tvn]C ]*

:B לפי הבסיס Vכלשהי.  נכתוב את v∈Vיהי :הוכחה

v=a1 v1...an vnעבור1 , ... ,n∈ℝ

V]כלומר  ]B=[
a
⋮
an
] 

T]כמובן שנגדיר את  ]C
B.*-להיות כמו ב

מהגדרת כפל מטריצת 

[T ]C
B
[V ]B = [[Tv1]C⋯[Tvn]C [ [

a1

⋯
an
] = a1[Tv1]C...an[Tvn]C

= [T a1 v1...an vn]C = [Tv ]C

T]שימו לב של- ]C
B ישn) עמודות n=dimV ויש לה (m) שורות m=dimW.(
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באותם תנאים וסימונים של המשפט הקודם::משפט

A[vמקיימת n×m מסדר Aאם מטריצה  ]B=[Tv ]CאזA=[T ]C
B.

שיש יחידות במשפט הקודם.  זה בדיוק אומר 

עמודה 1]  אז מקיימת את Aמכיוון ש-:הוכחה
A של ] = A[

1
0
⋮
0
] = A[V 1]B=

  

[Tv1]C

]באופן דומה i-עמודה ה
A של ] = Ai e i=A[V i]B=

  

[Tvi ]CכלומרA=[T ]C
B

Tתהיינה :מסקנה :V W ,S :WU

B-בסיס ל V ,C-בסיס ל W ,D-בסיס ל U.

[S °T ]D
B
=[ S ]D

C
[T ]C

B

V]נראה ששני הצדדים מקיימים שאם ניתן להם לפעול על:הוכחה ]B

Sהם יחזירו את [T v]D.

[S °T v]D=[S °T ]D
B
[v ]B

)3(

S]מהגדרת  °T ]D
Bהיא מקיימת[S °T v]D=[S °T ]D

B
[V ]B

ומצד שני 
[S ]D

C
[T ]C

B
[V ]B

[Tv ]C

= [ S ]D
C
[Tv ]C = [S Tv]D = [S °T v ]D

 המקיימת תנאי זה.יחידהראינו שישנה מטריצה 

S]ולכן °T ]D
B
=[ S ]D

C
[T ]C

B

•[T ]C
B
[V ]B=[Tv ]C

•[Tv ]C=A[V ]B⇒ A=[T ]C
B

S]⇐יש שוויון בינהן• ]D
C
[T ]C

B ,[S °T ]D
B
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   לעצמו  V  העתקת הזהות ממרחב וקטורי 

B={v1 מ"ו Vיהי :טענה ...vn ]בסיס שלו.  אז{ I ]B
B
= [

1
0
⋯
0
]

העמודה הראשונה הוא:הוכחה

 [ I v i]B=[v1]B=[
1
0
⋯
0
]=e1

v1=a1 v1...an v n

]: jהעמודה ה- I v j] = [v j ]B=[
1
0
⋯
0
]
c

=e j

]לכן  I ]B
B[
⋮
e i

⋮

⋯
⋮
en

⋮ ] = I
מטריצת
היחידה

מטריצות מעבר ודומיין מטריצות

בדוגמת הגזירה שראינו בשיעור הקודם ובדוגמאות שנראת / ראינו בתרגול,

 באיזה בסיסים בחרנו ע"מ לייצג אותו.מאודראינו שמטריצת הייצוג תלויה 

עתה נדבר רק על העתקות ממרחב וקטורי לעצמו.  העתקות אלו נקראות אנדומורפיזים.

]ℝ3למשל בהעתקת הגזירה  x ] 
D

ℝ3[ x ]

[D ]E
E
=

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

[D ]E
E
=

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


אלו מטריצות שונות.  מה הקשר בינהן?

Tנשים לב שאם  :V V ,I :V V

 T= I °T    T=T ° I
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T מ"ו ותהיVיהי :טענה :V V והיוB-ו C בסיסים של V.(כלשהם) 

[T ]C
C
= [ I ]C

B
[T ]B

B
[ I ]B

C

נשתמש במה שלמדנו על ייצוג הרכבת העתקות:הוכחה

[ I ]C
B
[T ]B

B

 [ I ]B
C
= [ I °T ]C

B
[ I ]B

C
= [ I °T ° I ]C

C
= [T ]C

C

מ.ש.ל.

V] פשוט מראים שכאשר שני הדצצים פועלים על:תרגיל:  2  הוכחה  ]Cהם נותנים[Tv ]C.

Tראיתם / תראו שאם:דוגמה :ℝ2
ℝ

2,T  x , y=5x y , x5y 

T]אז ]E
E
=5 1

1 5)E={1,e  ,0,1}(

1,1} הבסיסBואם  ,1,−1}אז[T ]B
B
=6 0

0 4

מה שנעשה אחרי פסח:

)4(

5 1
1 510 = 51 = [Te1]E

6 0
0 410  = 60 = [Tv]B

5 1
1 5 = [T ]E

E
= [ I ]E

B
[T ]B

B
[ I ]B

E
= [ I ]E

B 6 0
0 4

]נמצא מיהם  I ]B
E
= [[ I e1]B[ I e2]B ] = [[1,0]B[0,1]B ] 

1,0= a 1,1 b 1,−1=ab ,a−b

ab=1 a−b=0
2a=1 a= 1

2
b= 1

2

0,1=ab ,a−b
ab=0 a−b=1

2a=1 a=1
2

b=−1
2
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]נמצא את  I ]E
B
= [[ I 1,1]E [1,−1]E ] = [1,1]E [1,−1]E  = 1 1

1 −1

I=[Iבדיקה: ]B
B
=[ I ]B

E
[ I ]E

B
=

1
2

1
2

1
2
−

1
2
1 1

1 −1=1 0
0 1

5 1
1 5=1 1

1 −16 0
0 4

1
2

1
2

1
2
−

1
2
=1 1

1 −1⋅3 3
2 −2=5 1

1 5

]למטריצה:הגדרה I ]C
BכאשרB-ו Cבסיסים 

.C לבסיס Bנקרא מטריצות מהעבר מהבסיס 

מכווין שאנו מתרכזים כרגע בהעתקות ממרחב וקטורי לעצמו,:סימון

T]מקובל להשתמש בסימון  ]B =
סימון

[T ]B
B

] בסיסים אז C ו-B מ"ו Vיהי :טענה I ]C
B-הפיכה ומתקיים ש[ I ]CB 

−1
= [ I ]B

C

]:הוכחה I ]C
B
⋅[ I ]B

C
=[ I ]C

C
=I

Tשימו לב שאם :הערה :TVאז[T ]C
B.מטריצה ריבועית

T]ראינו שיש קשר הדוק בין ]B
B-ל[T ]C

C.והוא נתון ע"י מטריצות המעבר

[T ]C
C
=[ I ]C

B
[T ]B

B
[ I ]B

C

T]* אז רואים שיש קשר הדוק בין ]B
B-ל[T ]C

C.ונרצה לתת לו שם

)Similar  (דומות נקראות B ו-A ריבועיותמטריצות :הגדרה

B=P−1 כך ש-Pאם קיימת מטריצה הפיכה  AP

T]ראינו ש- ]B
B-ו[T ]C

C.דומות

 על מטריצות.יחס שקילותהיחס "דומות" הוא :טענה

A=A−1   דומה לעצמה:A:הוכחה AI

A-דומה ל B אז B-דומה ל A:P B P−1 A ⇔ B=P−1 A P

B=P−1אם  AP ,C=Q−1 BQאז C=Q−1 P−1 AP
B

Q=PQ −1 AP Q
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T:דוגמה  x , y=5x y , x5y 

B={1,1 ,1,−1}A={1,1 , 0,1}

[T ]E
E
=5 1

1 5det=24 tr=10

[T ]B
B
=6 0

0 4 det=24 tr =10

[T ]A
A
=6 1

0 4 det=24 tr=10

[T 1,1]A
6,0

=6,6=6 4,10⋅0,1

[T 0,1]A
1,4

=1,5=11,14⋅0,1

למטריצת דומות יש אותה דטרמינטה.:  1  טענה 

B=Pיהיו :הוכחה AP−1 כאשרP.הפיכה 

∣P∣ = ∣P A P−1∣ = ∣P∣∣A∣∣P−1∣
∣P∣−1

= ∣P∣∣P∣−1
⋅∣A∣=∣A∣

.trace = עקבהלמטריצות דומות יש אותה :  2  טענה 

tr:טענת עזר AB=tr BA

נובע מנוסחה לכל מטריצות.... (נסו שוב).:“הוכחה"

B=P:  יהיו הוכחת טענה AP−1 כאשרP.הפיכה 

tr P A P−1
 = tr P−1PA = tr A

dimNull ואותה אפיסות ( אפיסות = דרגהלמטריצות דומות יש אותה :  3  טענה   A(

rank מטריצה הפיכה אז Pאם :טענת עזר PB=rank B=rank BP 

ראינו.  נראה שוב אחרי פסח.:הוכחת ט"ע

B=P  :  3  הוכחת ט'  AP−1 ,rank B =rank P A P−1
=rank  AP−1

=rank  A

ומשפט המימד יש לה אותו אפסיות.

 מטריצות דומות.A, Bיהיו :סיכום

∣A∣=∣B∣אז 

tr A=tr B

rank  A=rank B

dimnul  A=dimnul B
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Tעלשוב נדבר   x , y=5x y , x5y   :[T ]E
E
=5 1

1 5
a 0
0 b10=a 10a 0

0 b01=b 01a 0
0 b xy=aaxby

וקטורים עצמיים וערכים עצמיים

(הקדמה לאחרי פסח)

∣x−5 −1
−1 x−5∣ = x−52−1 = 0

x=6,4 6.  מחפש י"ע עבור הע"ע:

 1 −1
−1 1  xy  = 00xy = 11

4−5 −1
−1 4−5 xy  = 00 = x−52−1 = 0

−1 −1
−1 −1 xy  = 00 =  x−52−1 = 0xy =  1

−1

!!Tהמורכב מוקטורים עצמיים ביחס לפעולות ℝ2 של בסיסמצאנו 

B={1,1נקר אלו  , 1,−1} ונקבל[T ]B
B
=אלכסונית e=6 0

0 4 

¿B[T 1,−1]B

[¿ ]=6 0
0 4

[T ]B
B
=¿

61,1= 6 1,1 0 1,−1

T 1,−1=4,−4=01,14 1,−1

אחרי פסח:

נלכסן מטריצות.1

באופן גאומטרי: מיתקיים, זוויות, וכו".ℝnלדבר על .2
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 (אחרי פסח)08.04.10 – 5שיעור 

נושאי הקורס

העתקות לינאריות.1

ערכים עצמיים ולכסון מטריצות.2

 מימד.nהיבט הגאומטריים  האלגברה הלינארית המרחב האויקלידי ה-.3

סיכום קצרה על העתקות לינאריות

V,W.מ"ו T :VW:לינארית אם  .

•T vw =TvTw לכלv ,w∈V

•T  v =T v  לכלv∈V ,∈ℝ

ועוד

*T 0=0

 *ImT={Tv ∣ v∈V }, KerT={v ∣Tv=0 }

dimV=dimKerTdimImT:משפט המימד

A∈Mלמדנו שמטריצה.1 m×nℝ-משרה העתקה לינארית שסומנו בT A:ℝn
ℝ

m

2.  T Av =Av

kerTלמדנו ש-.3 A=nul A ,ImT A=col A

Tלמדנו שאם.4 :ℝn
ℝ

m לינארית אזT=T A כאשרA=
⋮
Te1

⋮

⋯
⋮
Ten

⋮  

Tלמדנו שאם .5 :V W איזומורפיזםחח"ע ועל אז הוא נקראת.

Tלמדנו שאם .6 :V V אזTחח"ע ⇔kerT={0 }

T    ייצוג העתקות כללית:.7 :TW

8.B-בסיס ל V, C-בסיס ל W הגדרנו  .[T ]C
B
=[ [Tv1]C ...[Tvn]C ]

Tv]וראינו ש  ]C=[T ]C
B
[V ]B.
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Sואם בנוסף  :WV ,D-בסיס ל V אז [S °T ]D
B
=[ S ]D

C
[T ]C

B

]קראנו למטריצה .9 I ]C
B כאשר)I :V V-העתקת הזהות, וB-ו C בסיסים של V.(

  :  C   ל-  B  מטריצת מעבר מ-

I=[Iהראנו ש-.1 ]C
Bמטריצת הזהות →

I=[Iוהראנו ש- ]B
C
[ I ]C

B
=[ I ]B

B

דימיון מטריצות

B=P−1 כך ש-D אם קיימת מטריצה הפיכה V ל-דומה Aנאמר ש-.1 AP

.יחס שקילותלמדנו שיחס הדמיון הוא .2

 אז:דומות מטריצות A,B: יהיו   משפט.3

tr A=tr B ,∣A∣=∣B∣ ,rank  A=rank B ,dimNul A=dimNul B

יהיו עוד דברים.

)diagonalizable (או ניתנת ללכסון – לכסינה Aנאמר ש-.4

 דומה למטריצה אלכסונית.Aאם 

P−1 הפיכה כך ש P לכסינה אם קיימת Aבמילים אחרות,  AP.מטריצה אלכסונית

diagתזכורת:  מטריצה אלכסונית מהצורה  .5 a1 , ... , an = 
a1 0 0 0
0 a2 0 0

0 0 ⋱ 0
0 0 0 an


ברור שמטריצה אלכסונית היא לכסינה (כי היא דומה לעצמה)..6

לעומת זאת, מטריצה לכסינית הם לא בהכרח אלסונית.

1לא כל מטריצה היא לכסינה, לדוגמה .7 1
0 1.לא לכסינה – נראה בהמשך

מה הדוגמה העיקרית למטריצות דומות:

Tתהי  :V V.(בשלב זה אנחנו מתרכזים בעתקות מאותו מרחב לעצמו)

.V בסיסים ל-C ו-Bוהיו 

T]:סימון ]B :=[T ]B
B
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T]הדוגמה היא  ]B-דומה ל[T ]C?מדוע  .

P−1רוצים
[T ]B P=[T ]C <=[ I ]C

B
[T ]B [ I ]B

C
=[T ]C

]=Pכלומר אם נגדיר  I ]B
C-נקבל שP−1

[T ]B P=[T ]C

  (של נושאי הקורס) היא ללמוד ללכסן מטריצות.  2  מטרית חלק 

להבין מתי אפשר ומתי אי אפשר.•

איך ללכסן אם אפשר.•

למה זה טוב.•

P−1 כך ש-P אם קיימת מטריצה הפיכה Aנאמר שאפשר ללכסן את  AP.אלכסונית

.A של המלכסנת נקרא מטריצה Pלמטריצה 

 מטריתה המלכסנת אותה.P מטריצה לכסינה ותהי Aתהי :תרגיל

A=1:למשל 1
1 0P=

15

2
1−5

2
1 1  אזP−1 AP=

15

2
0

0
1−5

2


.A1000מצאו את :המשך

P−1נסמן:פתרון AP=diag a1 ,... , an=
a1 0 0 0
0 a2 0 0
0 0 ⋱ 0
0 0 0 a n

=D

D=P−1ואז  A P<=P D P−1
=Aולכן An

=P D P−1

n
=*

*=P DP−1
P D P−1

 ...P D P−1
=P Dn P−1

1למשל במקרה שלנו 1
1 0 

k

= P 
15

2

k
0

0 1−5

2

k P−1

תרגיל: מצאו נוסחה לסדרת פיבונצ'י מהנתונים לעיל.

v]שיעביר מתקיים v∈Vמה זה וקטור  ]B=aei=
0
⋮
a
⋮
0
 i-המקום ה
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v = 0v10v2...avi0v i1...0v4 = av i

ערכים עצמיים ווקטורים עצמיים

Tתהי  :V V.

≠0נאמר שוקטור
*

v∈V של וקטור עצמיהוא T ערך עצמי עם a∈RאםTv=av.

.aשהוא וקטור עצמי עם ערך עצמי v≠0 אם קייםTערך עצמי של a∈ℝנאמר ש-

T:דוגמה :V Vהעתקת האפס

.0 עם ערך עצמי Tהוא וקטור עצמי של ≠0אז כל וקטור 

Tv=0v=0למה?  

T=Tתהי :דוגמה A כאשרA=
5 2 −1
2 2 2
−1 4 4 אז הוקטור

1
1
1 6הוא ו"ע עם ע"ע.

T:נבדוק A
1
1
1 = A

1
1
1 = 

6
6
6 = 6

1
1
1

Tתהי:משפט :V V:ערכים עצמייםלינארית.  אז

Tv1 המורכב מוקטורים עצמיים של V ל-Bאם קיים בסיס .1 ,... , vn

 ואם נסמןאלכסונית הוא B ביחס לבסיס Tאז מטריצת הייצוג של 

[T ]B=diag a1 , ... , anאזa iהוא הערך עצמי המתאים לוקטורv i.

C={w1אם .2 , ... ,wn} בסיס שלV-כך ש [T ]C=diag b1 ,... , bn

wאז  i הוא וקטור עצמי שלTעם ערך עצמי b i.

v1 הוא בסיס של וקטורים עצמיים B) אז 1נתחיל ב-(:הוכחה ,... , vnעם ערכים עצמייים

a1 , ... , an-בהתאמה.  כלומר, מתקיים שv1 ,... , vn-בסיס לV

Tו- v1=a1 v1 ,T v2=a2 v 2 , … ,T vnan vn.

T]נבדוק מהי  ]B:[T ]B=[[
⋮
Tv1

⋮ ] . ..[
⋮
Tvn

⋮ ]]
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T v1=a2 v1=
?

= a1 v1
0

...n vn

[T v1]=[
a
0
⋮
0
]=a1 e1

T]באופן דומה  v1]B=[
0
⋮
ai

0
]=a i e i

T]בסה"כ מקבלים  ]B=[
a1 0 0 0
0 a2 0 0
0 0 ⋱ 0
0 0 0 an

]=diag a1 , ... , an

):2).  (1סיימנו את (

w פועלת עלTנבדוק איך  i-ידוע לי ש  .[Tw 1]C=[T ]C =העמודה ה-i של
0
⋮
b i

⋮
0
=b i ei

Twi=biומהגדרת וקטור קואו' (מהתרגילון) מקבלים wi.

wכלומר, i היא וקטור עצמי שלT עם ע"ע b i.

Tנאמר ש-:הגדרה :V Vאם קיים בסיס נתנת ללכסון B-כך ש [T ]B.אלכסונית

  שמורכב מוקטורים עצמייםV ניתנת ללכסון אם"ם קיים בסיס ל-Tבעצם ראינו ש-
.Tשל 

P−1 (ז"א למצוא A.  נרצה ללכסן את n×n מטריצה Aתהי  AP.(אלכסונית

Tנתבונן בהעתקה A:ℝn
ℝ

n.

T]נשים לב ש- A]E=A כאשרE.הבסיס הסטנדרטי 

Tנשים לב שאם נצליח ללכסן את A,

T כך ש-ℝn שלBכלומר נמצא בסיס  A.אלכסונית

T]נקבל ש- A]B=[ I ]B
E
[T A]E

E
[I ]E

B אלסכוניתP−1 AP ]=Pכאשר= I ]E
B.

T זה כמו ללכסן אתAכלומר, ללכסן את  A.

 עלינו למצוא בסיס של וקטורים עצמייםAלכן מהמשפט שהראנו כדי ללכסן את 

Tשל A.

.n×n מטריצהAתהי :הגדרה
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v≠0 וקרא וקטור עצמי שלA עם ערך עצמי a∈ℝאםAv=av.

, ע"מ ללכסון אותהn×n ריבועית Aבהינתן מטריצה :לסיכום

ℝצריך למצוא בסיס של 
n שמורכב מוקטורים עצמיים שלA.

מציאת ערכים עצמיים וקטורים עצמיים של מטריצות

?A.  איך נמצא מיהם הערכים העצמיים של n×n מטריצהAתהי 

=Avהמקייםv≠0כך שקיים x∈ℝאנחנו מחפשים  xv.

xv−Av=0נעביר אגף:  = xIv−Av = xI−AvxI−A v=0

זה קורה אם ורק אם:

1.v-הוא פתרון לא טריביאלית למערכת המשוואות ההומוגנית ש  xI−A.מייצגת

2.0=∣xI−A∣

3.v∈nul xI−A

.xI−A∣=0∣המקיימיםx∈ℝ הם כל ה-Aהערכים העצמיים של :לסיכום

∣xI−A∣ולפולינום  Aקוראים המטריצה האופיינית של xI−Aלמטריצת 
.A של הפולינום האופייניקוראים 

A=−7:דוגמאות 8
−6 7 

xI−A= הוא: Aהמטריצה האופיינות של  x 0
0 x−A=x7 −8

6 x−7 
:Aהפולינום האופייני של 

∣x7 −8
6 x−7∣=x7x748=x2

−4948= x2
−1 = x2

0x−1

.1שימו לב שזה פולימום מתוקן, כלומר המקדם העליון שלו הוא 

.∣A∣=−12∣A∣שימו לב שהמקדם האחרון החופשי הוא

.trA− הואxוהמקדם של 

?Aמיהם הערכים העצמיים של 

xI−A∣=x2∣כך ש-x∈ℝאלו כל ה-
.x=±1כלומר0=1−

לפי מה שראינו, לכל ערך עצמי שמצאנו נוכל למצוא לפחות וקטור עצמי אחד.

אז נעשה זאת:
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.1I−Av=0כך ש-v≠0, קיים וקטורx=1ראינו שעבור 

=17 −8
6 1−7  = 8 −8

6 −6 
v1=11קל לראות/מדרגים ש- .פתרון המשוואות

v1=11כלומר  1הוא וקטור עצמי עם ערך עצמי.

Av1=1v1:נבדוק

−7 8
−6 711 = 11=1 1

1
2,2 ,aשימו לב שגם  ,a ,a≠0.וקטורים עצמיים

.x=1נמצא וקטור עצמי עם ערך עצמי 

−1I−A=6 −8
6 −86 −8

6 −8  x1

x2
 = 00  כלומרv2=43 1וקטור עצמי עם ע"ע

A=−7:דוגמאות 8
−6 7−7 8

−6 743 = −4
−3  = −143 

,B={v1קיבלנו ש- v2} הם בסיס המורכב מו"ע שלA ללכסן את אפשר אז A!!

[ I ]B
E
[T A]E [ I ]E

B
= [T A]B = 1 0

0 −1 = P−1 A P

P  ?Pמיזו  = [T ]E
B
= [ [v1]E [v2]E ] = 1 4

1 3

a b
c d 

−1

=
1

ad−bc
⋅ d −b
−c a 

P−1
=

1
3−4 

3 −4
−1 1  = −3 4

1 −1 
1ולכן יתקיים  0

0 −1 = −3 4
1 −1−7 8

−6 7 1 4
1 3

−7או  8
−6 −7  = 1 4

1 31 0
0 −1 −3 4

1 −1
−7למשל  8

−6 −7 
431

= 1 4
1 31

431 0
0 −1431−3 4

1 −1
A=1לעשות אותו דבר שעשינו עבור 1

1 0 להסיק נוסחה לאיבר הכללי של 

נוסחת פיבונצ'י.
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להתעלם מדף הזה :)

↦

A = [
1 −1 2 3
2 −2 3 5
1 −1 0 1 ]

−2R1R2 R2

            
−1R1R3 R3

[
1 −1 2 3
0 0 −1 −1
0 0 −2 −2 ]

−2R2R3 R3

             [
1 −1 2 3
0 0 −1 −1
0 0 0 0 ]
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Quick Reference

ערכים עצמיים

ע"ע הופך מטריצה רגולרי לסינגולרי (אפשר לבדוק ככה)

det, והכפלתם = tr ערכים עצמיים, שהסכוםם =n יהיו בד"כ nxnבמטריצה 

 ע"ע מורכבים.  במשולשית אולי ו"ע יחיד.2במטריצה מאונכת יהיו 

:2x2במטריצה 

det  A− I =2−tr A⋅det  A

אם מוסיפים Iלמטריצה, ע"ע נשאר יגדל ב I.וו"ע נשאר אותו דבר 

העתקה לינארית

v1בהינתן בסיס קלט  ...vnובסיס פלטw1 ...wn

:Aלמצוא את 

T: 1עמוד  v=a1,1w1a2,1w 2...am, 1wm

21



אינדקס

ג
6....................................................גרעין

ד
10.................................................דומות

ה
2.....................................העתקה לינארית
1....................................העתקות לינארית

5........................................העתקת האפס
ו

16..........................................וקטור עצמי
ט

1...........................טרנספורמציות לינארית

מ
15..............................................מלכסנת

ע
16............................................ערך עצמי

פ
..................................................פונקציה

2..............................................הולכות
2.................................העתקה לינארית

ת
6...................................................תמונה

4...........................תמונה של צירוף לינארי

22


	שיעור 1 – 25.02.10
	מרחבים וקטורים
	העתקות לינארית (Linear maps)
	גרעין ותמונה של העתקה לינארית

	שיעור 3 – 11.03.10
	מציאת מטריצה המייצגת העתקה לינארית
	כיצד נקבעת העתקה לינארית
	מציאת מטריצה המייצגת העתקה כללית

	שיעור 4 – 18.03.10
	על ייצוג העתקה (כללית) העזרת מטריצות
	מטריצות מעבר ודומיין מטריצות
	וקטורים עצמיים וערכים עצמיים

	שיעור 5 – 08.04.10 (אחרי פסח)
	נושאי הקורס
	סיכום קצרה על העתקות לינאריות
	ערכים עצמיים ווקטורים עצמיים
	מציאת ערכים עצמיים וקטורים עצמיים של מטריצות

	להתעלם מדף הזה :)
	Quick Reference
	אינדקס

